发表主题
论坛首页 推荐主题 主题专辑 爱医培训 爱医杂志 签约作者 荣誉勋章 排行榜 我的主页
查看: 1508|回复: 1
打印 上一主题 下一主题

年龄相关性黄斑变性关键机制确认-两种潜在疗法的发展

[复制链接]
跳转到指定楼层
1# 楼主
发表于 2011-3-9 20:58 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?注册

x
本帖最后由 云霄飘逸 于 2014-2-22 17:04 编辑

In Age-Related Macular Degeneration, Key Mechanism Identified, 2 Possible Therapies Developed
A team of researchers, led by University of Kentucky ophthalmologist Dr. Jayakrishna Ambati, has discovered a molecular mechanism implicated in geographic atrophy, the major cause of untreatable blindness in the industrialized world.

Their article, "DICER1 Deficit Induces Alu RNA Toxicity in Age-Related Macular Degeneration," was published online by the journal <em>Nature</em> on Feb. 6 (DOI: 10.1038/nature09830).

Concurrent with this discovery, Ambati's laboratory developed two promising therapies for the prevention of the condition. This study also elaborates, for the first time, a disease-causing role for a large section of the human genome once regarded as non-coding "junk DNA."

Geographic atrophy, a condition causing the death of cells in the retina, occurs in the later stages of the "dry type" of macular degeneration, a disease affecting some 10 million older Americans and causing blindness in over 1 million. There is currently no effective treatment for geographic atrophy, as its cause is unknown.

Ambati's team discovered that an accumulation of a toxic type of RNA, called Alu RNA, causes retinal cells to die in patients with geographic atrophy. In a healthy eye, a "Dicer" enzyme degrades the Alu RNA particles.

"We discovered that in patients with geographic atrophy, there is a dramatic reduction of the Dicer enzyme in the retina," said Ambati, professor and vice chair of the Department of Ophthalmology and Visual Sciences and the Dr. E. Vernon and Eloise C. Smith Endowed Chair in Macular Degeneration Research at the UK College of Medicine. "When the levels of Dicer decline, the control system is short-circuited and too much Alu RNA accumulates. This leads to death of the retina."

Alu elements make up a surprisingly large portion - about 11 percent by weight - of the human genome, comprising more than 1 million sequences. However, their function has been unknown, so they have been called "junk" DNA or part of the "dark" genome. The discovery of Alu's toxicity and its control by Dicer should prove of great interest to other researchers in the biological sciences, Ambati says.

Ambati's team developed two potential therapies aimed at preventing geographic atrophy and demonstrated the efficacy of both approaches using laboratory models. The first involves increasing Dicer levels in the retina by "over-expressing" the enzyme. The second involves blocking Alu RNA using an "anti-sense" drug that binds and degrades this toxic substance. UK has filed patent applications for both technologies, and Ambati's group is preparing to start clinical trials by the end of this year.

Response from the scientific community has been enthusiastic.

"These findings provide important new clues on the biological basis of geographic atrophy and may provide avenues for intervention through preventing toxic accumulation of abnormal RNA products," said Dr. Paul Sieving, director of the National Eye Institute.

"Ambati's latest research provides important mechanistic insights in geographic atrophy, and identification of this novel pathway may result in new therapeutic targets for a major cause of blindness," said Dr. Napoleone Ferrara, a member of the National Academy of Sciences and Lasker-DeBakey awardee who is a researcher at Genentech.

This work has "widespread implications" for future study, said Dr. Stephen J. Ryan, president of the Doheny Eye Institute and member of the Institute of Medicine.

"The authors have opened an important line of research with real possibilities for future therapeutic intervention for patients with geographic atrophy," Ryan said.

Ambati's laboratory is supported by the National Eye Institute and Research to Prevent Blindness. Dr. Ambati is a Doris Duke Charitable Foundation Distinguished Clinical Scientist and Burroughs Wellcome Fund Translational Research Clinical Scientist.

Source:
Keith L. Hautala
University of Kentucky
2# 沙发
发表于 2014-2-27 18:14 | 只看该作者
能发个中文版本的吗?
--------------------
此消息发自Android版诊疗助手
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|关于我们|隐私保护|版权保护|小黑屋|爱爱医 ( 粤ICP备2023094852号 )

GMT+8, 2024-9-24 16:30

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.